Hepatic gene transfer of atheroprotective human apoE by recombinant viral vectors can reverse hypercholesterolaemia and inhibit atherogenesis in apoE-deficient (apoE(-/-)) mice. Here, in preliminary studies we assess the effectiveness of a recently developed self-complementary adeno-associated virus (scAAV) serotype 8 vector, driven by a hepatocyte-specific promoter (LP1), for liver-directed gene delivery of human apoE3. Vector viability was validated by transducing cultured HepG2 cells and measuring secretion of apoE3 protein. Male and female apoE(-/-) mice, 6-month old and fed on normal chow, were intravenously injected with 1x10(11) vg (vector genomes) of scAAV2/8.LP1.apoE3; age-matched untreated mice served as controls. In male mice, plasma apoE3 levels were sufficiently high (up to 17 microg/ml) to normalize plasma total cholesterol and ameliorate their proatherogenic lipoprotein profile, by reducing VLDL/LDL and increasing HDL 5-fold. At termination (12 weeks) development of aortic atherosclerosis was significantly retarded by 58% (aortic lesion area 8.2+/-1.4% vs. 19.3+/-2.4% in control males; P<0.001). Qualitatively similar anti-atherogenic effects were noted when female mice were treated, but the benefits were less marked and aortic lesions, for example, were reduced by only 33% (15.7+/-3.7% vs. 23.6+/-6.9%). Although group numbers were small (n=4/5), this gender-specific difference reflected two to three times less apoE3 in plasma of female mice at weeks 3 and 6, implying that gene transfer to female liver using scAAV vectors may require additional optimization, despite their established superior potency to conventional single-stranded (ssAAV) vectors.