Palmerolide A (1) is a macrolide isolated from the Antarctic tunicate Synoicum adareanum that is of interest due to its potential as an antimelanoma drug. Biosynthesis is predicted to occur via a hybrid PKS-NRPS pathway within S. adareanum, but the identity of the palmerolide-producing organism (host or putative host-associated microorganism) has not been established. Microscopic observation revealed a dense microbial community inside the tunicate, and evidence from 16S rRNA gene DGGE profiles and clone library sequences suggests that the bacterial community has moderate phylogenetic complexity. The alpha and gamma classes of Proteobacteria account for ∼75% of the cloned 16S rRNA genes, and the majority of these sequences are affiliated with the genera Pseudovibrio and Microbulbifer. DNA sequences encoding type I PKS ketosynthase (KS) domains were detected by PCR. The S. adareanum KS sequences, which affiliate with the trans-AT clade, are similar to portions of PKS proteins that lack integrated acyltransferase domains in pathways for generating bioactive polyketide compounds, including bryostatin, leinamycin, and pederin.