Objective: To investigate the effects of prostaglandin D2 (PGD2) on interleukin-1beta (IL-1beta)-induced matrix metalloproteinase 1 (MMP-1) and MMP-13 expression in human chondrocytes and the signaling pathways involved in these effects.
Methods: Chondrocytes were stimulated with IL-1 in the presence or absence of PGD2, and expression of MMP-1 and MMP-13 proteins was evaluated by enzyme-linked immunosorbent assay. Messenger RNA (mRNA) expression and promoter activity were analyzed by real-time reverse transcription-polymerase chain reaction and transient transfections, respectively. The role of the PGD2 receptors D prostanoid receptor 1 (DP1) and chemoattractant receptor-like molecule expressed on Th2 cells (CRTH2) was evaluated using specific agonists and antibody-blocking experiments. The contribution of the cAMP/protein kinase A (PKA) pathway was determined using cAMP-elevating agents and PKA inhibitors.
Results: PGD2 decreased in a dose-dependent manner IL-1-induced MMP-1 and MMP-13 protein and mRNA expression as well as their promoter activation. DP1 and CRTH2 were expressed and functional in chondrocytes. The effect of PGD2 was mimicked by BW245C, a selective agonist of DP1, but not by 13,14-dihydro-15-keto-PGD2, a selective agonist of CRTH2. Furthermore, treatment with an anti-DP1 antibody reversed the effect of PGD2, indicating that the inhibitory effect of PGD2 is mediated by DP1. The cAMP-elevating agents 8-Br-cAMP and forskolin suppressed IL-1-induced MMP-1 and MMP-13 expression, and the PKA inhibitors KT5720 and H89 reversed the inhibitory effect of PGD2, suggesting that the effect of PGD2 is mediated by the cAMP/PKA pathway.
Conclusion: PGD2 inhibits IL-1-induced production of MMP-1 and MMP-13 by chondrocytes through the DP1/cAMP/PKA signaling pathway. These data also suggest that modulation of PGD2 levels in the joint may have therapeutic potential in the prevention of cartilage degradation.