A comprehensive segmentation, registration, and cancer detection scheme on 3 Tesla in vivo prostate DCE-MRI

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):662-9. doi: 10.1007/978-3-540-85988-8_79.

Abstract

Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising modality for detecting prostate cancer (CaP). Computer-aided diagnosis (CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake by the lesion. Comparatively there is relatively little work in developing CAD schemes for prostate DCE-MRI. In this paper, we present a novel unsupervised detection scheme for CaP from 3 T DCE-MRI which comprises 3 distinct steps. First, a multi-attribute active shape model is used to automatically segment the prostate boundary from 3 T in vivo MR imagery. A robust multimodal registration scheme is then used to non-linearly align corresponding whole mount histological and DCE-MRI sections from prostatectomy specimens to determine the spatial extent of CaP. Non-linear dimensionality reduction schemes such as locally linear embedding (LLE) have been previously shown to be useful in projecting such high dimensional biomedical data into a lower dimensional subspace while preserving the non-linear geometry of the data manifold. DCE-MRI data is embedded via LLE and then classified via unsupervised consensus clustering to identify distinct classes. Quantitative evaluation on 21 histology-MRI slice pairs against registered CaP ground truth estimates yielded a maximum CaP detection accuracy of 77.20% while the popular three time point (3TP) scheme yielded an accuracy of 67.37%.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Artificial Intelligence*
  • Contrast Media*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Pattern Recognition, Automated / methods*
  • Prostatic Neoplasms / diagnosis*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*

Substances

  • Contrast Media