Aims: Under normal conditions, the intestinal mucosa acts as a local barrier to prevent the influx of luminal contents. The intestinal epithelial tight junction is comprised of several membrane associated proteins, including zonula occludens-1 (ZO-1) and occludin. Disruption of this barrier can lead to the production of pro-inflammatory mediators and ultimately multiple organ failure. We have previously shown that Pentoxifylline (PTX) decreases histologic gut injury and pro-inflammatory mediator synthesis. We hypothesize that PTX prevents the breakdown of ZO-1 and occludin in an in vitro model of immunostimulated intestinal cell monolayers.
Main methods: Caco-2 human enterocytes were grown as confluent monolayers and incubated under control conditions, or with PTX (2 mM), Cytomix (TNF-alpha, IFN-gamma, IL-1), or Cytomix+PTX for 24 h. Occludin and ZO-1 protein levels were analyzed by Western blot. Confocal microscopy was used to assess the cytoplasmic localization of ZO-1 and occludin.
Key findings: Cytomix stimulation of Caco-2 cells resulted in a 50% decrease in both occludin and ZO-1 protein. Treatment with Cytomix+PTX restored both occludin and ZO-1 protein to control levels. Confocal microscopy images show that Cytomix caused an irregular, undulating appearance of ZO-1 and occludin at the cell junctions. Treatment with PTX prevented the Cytomix-induced changes in ZO-1 and occludin localization.
Significance: Treatment with PTX decreases the pro-inflammatory cytokine induced changes in the intestinal tight junction proteins occludin and ZO-1. Pentoxifylline may be a useful adjunct in the treatment of sepsis and shock by attenuating intestinal barrier breakdown.