In medium and in homogenates from baby-hamster kidney cells (BHK) transfected with human cathepsin D cDNA, an elevated activity of cathepsin D was found as compared to non-transfected cells. The elevated activity was removed by titrating the homogenates with an anti-(human cathepsin D) antibody. Metabolic labelling and immunoprecipitation revealed that, in the transfected cells, human cathepsin D was synthesized as a 53-kDa precursor indistinguishable from that found in human cells. A portion of the precursor was secreted and the remainder was processed to intermediate and mature chains within a few hours of synthesis. The precursor that was released from the transfected cells had a slightly smaller apparent size than that from cultured human fibroblasts. This difference was abrogated when the precursors were treated with glycopeptidase F. In the intracellular small chain a difference was observed in the size of carbohydrate chains that were cleavable with endo-beta-N-acetylglucosaminidase H. Sequence analysis of the N-termini of mature intracellular cathepsin D indicated a N-terminal trimming in both large and small chains from both human and transfected hamster cells. The proteolytic maturation of human cathepsin D in BHK cells closely resembles that in human cells, whereas a portion of the carbohydrate side chains is processed differently. The trimming of the N-termini in mature cathepsin D is proposed to be a part of the maturation and aging of this protein.