Background: Kistrin is a 68-amino acid polypeptide from the venom of the Malayan pit viper Agkistrodon rhodostoma, which inhibits the platelet GPIIb/IIIa receptor. Its effect on thrombolysis, reocclusion, and bleeding associated with administration of recombinant tissue-type plasminogen activator (rt-PA) was studied in a canine model of coronary artery thrombosis.
Methods and results: Coronary patency was monitored for 2 hours by ultrasonic flow probe and repeated coronary angiography. The rt-PA was given as 0.45-mg/kg bolus injections at 15-minute intervals until recanalization or to a maximum of four boluses. Four groups of four or five dogs were studied: a control group that received intravenous heparin (4,000-unit bolus and 1,000 units each hour) and three groups that received heparin and 0.48, 0.24, or 0.12 mg/kg kistrin, administered as a 10% bolus injection and an infusion during a 60-minute period. In the control group, reflow occurred in four of five dogs within 37 +/- 47 minutes but was followed by cyclic reflow and reocclusion. Kistrin at a dose of 0.48 and 0.24 mg/kg reduced the time to reflow to 6 +/- 5 and 10 +/- 3 minutes, respectively, and abolished reocclusion. With 0.12 mg/kg kistrin, reflow occurred in all four animals, within 27 +/- 23 minutes, and reocclusion occurred in two animals. Kistrin induced a dose-related prolongation of the template bleeding time: with 0.48 mg/kg kistrin, the bleeding time was prolonged from 3.8 +/- 1.3 minutes before infusion to 29 +/- 2 minutes during infusion, but it was shortened to 8.3 +/- 2.6 minutes at 90 minutes after the end of infusion. Kistrin also caused a dose-related inhibition of platelet aggregation with ADP and collagen: with 0.48 mg/kg kistrin, platelet aggregation was abolished during the infusion but had partially recovered toward the end of the observation period. Pathological examination of recanalized coronary arterial segments of dogs given 0.48 or 0.24 mg/kg kistrin revealed widely patent arteries with some platelets layered on the damaged intimal surface.
Conclusions: Kistrin increases the rate and extent of thrombolysis with a reduced dose of rt-PA, and it prevents reocclusion. At an effective dose, it is associated with a transient prolongation of the bleeding time and inhibition of platelet aggregation. Kistrin may offer promise as adjunctive treatment to thrombolytic agents in patients with acute myocardial infarction.