Purpose: To investigate the effect of 17alpha-ethynylestradiol (EE)-induced cholestasis on the expression of organic cation transporters (Octs) in the liver and kidney, as well as the pharmacokinetics and pharmacodynamics of metformin in rats.
Methods: Octs mRNA and protein expression were determined. The pharmacokinetics and tissue uptake clearance of metformin were determined following iv administration (5 mg/kg). Uptake of metformin, glucagon-mediated glucose production, and AMP-activated protein kinase (AMPK) activation were measured in isolated hepatocytes. The effect of metformin (30 mg/kg) on blood glucose levels was tested using the iv glucose tolerance test (IVGTT).
Results: The mRNAs of hepatic Oct1, renal Oct1, and Oct2 were decreased by 71.1%, 37.6%, and 94.5%, respectively, by EE cholestasis. The hepatic Oct1 and renal Oct2 proteins were decreased by 30.6% and 60.2%, respectively. The systemic and renal clearance of metformin were decreased. The in vitro hepatocyte uptake of metformin was decreased by 86.4% for V (max). Suppression of glucagon-stimulated glucose production and stimulation of AMPK activation in hepatocytes by metformin were diminished. In addition, metformin did not demonstrate a glucose-lowering effect during IVGTT in EE cholestasis.
Conclusion: The antidiabetic effect of metformin may be diminished in diabetic patients with EE cholestasis, due to impaired hepatic uptake of the drug via OCT1.