Aberrant expression and demethylation of gamma-synuclein in colorectal cancer, correlated with progression of the disease

Cancer Sci. 2008 Oct;99(10):1924-32. doi: 10.1111/j.1349-7006.2008.00947.x.

Abstract

Recent evidence suggests that gamma-synuclein is abnormally expressed in a high percentage of tumor tissues of diversified cancer types, but rarely expressed in tumor-matched non-neoplastic adjacent tissues (NNAT). The molecular mechanism of CpG island demethylation may underlie aberrant gamma-synuclein expression. To fully understand the roles of aberrant gamma-synuclein expression and demethylation in the development of colorectal cancer (CRC), we examined the expression and methylation status of gamma-synuclein in 67 CRC samples, 30 NNAT samples, and five CRC cell lines as well. By using reverse transcription-polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry analyses, gamma-synuclein expression was detected in both HT-29 and HCT116 cells, and was much higher in CRC samples than in NNAT samples (P < 0.05). The demethylating agent, 5-aza-2 cent-deoxycytidine, can induce re-expression of gamma-synuclein in COLO205, LoVo, and SW480 cells. Unmethylated gamma-synuclein alleles were detected in HT-29, HCT116, and LoVo cells by nested methylation-specific PCR, and the demethylated status of gamma-synuclein was much higher in CRC samples than in NNAT samples by real-time quantitative methylation-specific PCR (P < 0.05). The results of genomic bisulfite DNA sequencing further confirmed that the aberrant gamma-synuclein expression in CRC was primarily attributed to the demethylation of CpG island. The protein expression and demethylation status of gamma-synuclein in 67 CRC samples correlated with clinical stage, lymph node involvement, and distant metastasis. These findings suggest an involvement of aberrant gamma-synuclein expression and demethylation in progression of CRC, especially in advanced stages.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / pathology*
  • DNA Methylation*
  • Disease Progression
  • Gene Expression Regulation, Neoplastic*
  • HCT116 Cells
  • HT29 Cells
  • Humans
  • Immunohistochemistry
  • Neoplasm Staging
  • Retrospective Studies
  • gamma-Synuclein / genetics*
  • gamma-Synuclein / metabolism*

Substances

  • gamma-Synuclein