In the present paper, we demonstrate the feasibility of depositing a tailored calcium phosphate (Ca-P) coating on a Ti-6Al-4V substrate by using a pulsed Nd:YAG laser system. Different textures were obtained by varying the laser spot overlap with change in laser traverse speed. Surface roughness measurements using laser confocal microscopy indicated a decrease in roughness with increasing laser scan speed. X-ray diffraction studies revealed the formation of alpha-TCP, TiO2, Ti and Al as the major phases. An instrumented nanoindenation technique used to study the mechanical properties of the coatings, revealed a very high hardness and Young's modulus of the coating surface as compared to the substrate. This further proved the retainment of the ceramic phase on the surface. Wear studies in a simulated biofluid (SBF) environment demonstrated an increased wear resistance of the coated samples as compared to the bare Ti-6Al-4V. Formation of an apatite-like layer after immersion in SBF for different time periods further demonstrated the bioactivity of the coated samples.