Objectives: To document tumoricidal events after intravenous administration of a vascular targeting agent combretastatin A-4-phosphate (CA4P) in rodent liver tumors by using multiparametric magnetic resonance imaging (MRI) in correlation with microangiography and histopathology.
Materials and methods: Thirty rhabdomyosarcomas of 8 to 14 mm in diameter were obtained 16 days after implantation in liver lobes of 15 rats. Using a 1.5T magnet and a 4-channel wrist coil, T2-weighted imaging (T2WI), pre- and postcontrast T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and dynamic susceptibility imaging (DSI) with relative blood volume (rBV) and flow (rBF) maps were acquired at baseline, 1 hour, 6 hours, and 48 hours after iv injection of CA4P at 10 mg/kg and vehicle in 9 treated and 6 control rats, respectively. In vivo data including signal intensity (SI), tumor volume, apparent diffusion coefficient (ADC), rBV, and rBF were correlated with ex vivo microangiographic and histopathologic findings.
Results: CA4P-treated tumors (n = 18) grew slower than those (n = 12) of controls (P < 0.05), with vascular shutdown evident on CE-T1WI at 1 hour but more prominent at 6 hours. However, enhanced rim occurred in the periphery 48 hours after treatment, indicating neovascularization. ADC map enabled distinction between necrotic and viable tumors. DSI-derived tumoral rBV and rBF decreased significantly at 1 hour through 6 hours and partly recovered at 48 hours. SI-time curve reflected diverse therapeutic responses between tumor and liver. MRI findings were verified by ex vivo techniques.
Conclusions: Clinical MRI allowed monitoring of CA4P-related vascular shutdown, necrosis, and neovascularization of liver tumors in rats. Single dose of CA4P seemed insufficient for tumor eradication because of evident peripheral residue and recurrence.