Objective: Transient B cell depletion by rituximab has recently gained more importance in the treatment of rheumatic disorders. Nevertheless, little is known about the reemerging B cells. We analyzed dynamic changes in the repopulating B cells, particularly the postswitch B cells, and studied the mutational patterns of Ig genes in antigen-experienced B cells.
Methods: Five patients with active rheumatoid arthritis (RA) were treated with rituximab. In 3 patients, B cell receptor (BCR) gene analysis was performed before treatment and during B cell recovery using genomic DNA. In 2 patients, B cell subsets were studied during the early recovery phase using single-cell technology. For comparison, immunophenotyping of B cell subsets was performed.
Results: Early B cell recovery was marked by a relatively expanded population of highly mutated B cells, which were correlated with B cells with a plasmablast phenotype on comparative immunophenotyping. Analysis of the mutational pattern in these cells revealed increased RGYW/WRCY (where R = A/G, Y = C/T, and W = A/T) hotspot targeting (44% before rituximab versus 59% after) and elevated ratios of replacement to silent mutations within the complementarity-determining regions in Ig genes (1.87 before rituximab versus 2.67 after; P < or = 0.0025).
Conclusion: Our findings show that rituximab leads to qualitative changes in the imprints of highly mutated, antigen-experienced BCRs, representing the result of selection, whereas molecular processes such as Ig V rearrangements are not affected by this treatment.