We describe and discuss the design of a variable-temperature scanning tunneling microscope (STM) system for the study of molecules at temperatures between 18 and 300 K in ultrahigh vacuum. The STM head is a refinement of a very rigid design developed and successfully operated in Hamburg. In the current version, the head is connected to a liquid helium flow cryostat, thereby reaching a base temperature of 18 K. To minimize the heat load on the STM head, a helium back flow cooled radiation shield is installed. The dimensions and the choice of materials are based on simulations of the heat dissipation. The STM is galvanically isolated from the vacuum chamber to minimize electronic noise and mechanically decoupled by means of springs and an eddy current damping stage. Additionally, the design of the STM head allows the deposition of several molecular materials onto the same cold sample surface. The operation of the STM in imaging mode is demonstrated for TPP/Cu(111) and FePCNaClCu(111). Spectroscopic capabilities of the system are shown for electronic states on NaClCu(111) and TPP/Cu(111).