The effects of 25-fold overproduction of Escherichia coli signal peptidase I (SPase I) on the processing kinetics of various (hybrid) secretory proteins, comprising fusions between signal sequence functions selected from the Bacillus subtilis chromosome and the mature part of TEM-beta-lactamase, were studied in E. coli. One precursor (pre[A2d]-beta-lactamase) showed an enhanced processing rate, and consequently, a highly improved release of the mature enzyme into the periplasm. A minor fraction of a second hybrid precursor (pre[A13i]-beta-lactamase), which was not processed under standard conditions of SPase I synthesis, was shown to be processed under conditions of SPase I overproduction. However, this did not result in efficient release of the mature beta-lactamase into the periplasm. In contrast, the processing rates of wild-type pre-beta-lactamase and pre(A2)-beta-lactamase, already high under standard conditions, were not detectably altered by SPase I overproduction. These results demonstrate that the availability of SPase I can be a limiting factor in protein export in E. coli, in particular with respect to (hybrid) precursor proteins showing low (SPase I) processing efficiencies.