Methionine adenosyltransferase II (MAT II) is a key enzyme in cellular metabolism and catalyzes the formation of S-adenosylmethionine (SAMe) from L-methionine and ATP. Normal resting T lymphocytes have minimal MAT II activity, whereas activated proliferating T lymphocytes and transformed T leukemic cells show significantly enhanced MAT II activity. This work was carried out to examine the role of MAT II activity and SAMe biosynthesis in the survival of leukemic T cells. Inhibition of MAT II and the resultant decrease in SAMe levels enhanced expression of FasL mRNA and protein, and induced DISC (Death Inducing Signaling Complex) formation with FADD (Fas-associated Death Domain) and procaspase-8 recruitment, as well as concomitant increase in caspase-8 activation and decrease in c-FLIP(s) levels. Fas-initiated signaling induced by MAT II inhibition was observed to link to the mitochondrial pathway via Bid cleavage and to ultimately lead to increased caspase-3 activation and DNA fragmentation in these cells. Furthermore, blocking MAT 2A mRNA expression, which encodes the catalytic subunits of MAT II, using a small-interfering RNA approach enhanced FasL expression and cell death, validating the essential nature of MAT II activity in the survival of T leukemic cells.