ZNF521 (zinc finger protein 521) is a transcription factor with an N-terminal transcriptional repressor motif and 30 zinc finger domains. Although a high expression level of ZNF521 in human CD34+ progenitors and hematopoietic malignancies has been demonstrated, the functional role of ZNF521 in hematopoietic cell differentiation has not been clarified. In this study, we analyzed the role of ZNF521 in erythroid cell differentiation using the short hairpin RNA (shRNA)-mediated gene silencing method. Down-regulation of ZNF521 mediated by transient expression of shRNA for ZNF521 resulted in increased synthesis of hemoglobin in K562 and HEL cell lines as compared with control cells. K562-derived clones in which ZNF521 was constitutively silenced by shRNA also showed marked synthesis of hemoglobin and an increased expression level of glycophorin A. Since GATA-1 is the key regulator of erythroid differentiation, the effect of ZNF521 on transcription activity of GATA-1 was analyzed using a luciferase assay. GATA-1 activity was markedly inhibited by ZNF521 in a dose-dependent manner. Deletion analysis of ZNF521 showed that the repressive effect requires an N-terminal repression motif. Furthermore, the direct interaction of ZNF521 with GATA-1 was demonstrated. These results indicate that ZNF521 modulates erythroid cell differentiation through direct binding with GATA-1.