Metal nitride cluster fullerene M3N@C80 (M=Y, Sc) based dyads: synthesis, and electrochemical, theoretical and photophysical studies

Chemistry. 2009;15(4):864-77. doi: 10.1002/chem.200801559.

Abstract

The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes I(h)-Sc(3)N@C(80) and I(h)-Y(3)N@C(80) connected to an electron-donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3-dipolar cycloaddition reactions of azomethine ylides and Bingel-Hirsch-type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y(3)N@C(80)-based dyads and the [5,6] regioisomers in the case of Sc(3)N@C(80)-based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]-Y(3)N@C(80)-based dyads, whereas the [5,6]-Sc(3)N@C(80)-based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl-Sc(3)N@C(80)-fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron-transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C(60) dyad.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Electrochemistry
  • Fullerenes / chemistry*
  • Fullerenes / radiation effects
  • Nanotubes, Carbon
  • Scandium / chemistry*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Yttrium / chemistry*

Substances

  • Fullerenes
  • Nanotubes, Carbon
  • Yttrium
  • Scandium