While the response to Leishmania spp. is well characterized in mice and humans, much less is known concerning the canine immune response, particularly soon after exposure to the parasite. Early events are considered to be a determinant of infection outcome. To investigate the dog's early immune response to L. chagasi, an in vitro priming system (PIV) using dog naïve PBMC was established. Until now, dog PIV immune response to L. chagasi has not been assessed. We co-cultivated PBMC primarily stimulated with L. chagasi in vitro with autologous infected macrophages and found that IFN-gamma mRNA is up-regulated in these cells compared to control unstimulated cells. IL-4 and IL-10 mRNA expression by L. chagasi-stimulated PBMC was similar to control unstimulated PBMC when incubated with infected macrophages. Surprisingly, correlation studies showed that a lower IFN-gamma/IL-4 expression ratio correlated with a lower percentage of infection. We propose that the direct correlation between IFN-gamma/IL-4 ratio and parasite load is dependent on the higher correlation of both IFN-gamma and IL-4 expression with lower parasite infection. This PIV system was shown to be useful in evaluating the dog immune response to L. chagasi, and results indicate that a balance between IFN-gamma and IL-4 is associated with control of parasite infection in vitro.