A procedure for calculation of monitor units for passively scattered proton radiotherapy beams

Med Phys. 2008 Nov;35(11):5088-97. doi: 10.1118/1.2992055.

Abstract

The purpose of this study is to validate a monitor unit (MU) calculation procedure for passively scattered proton therapy beams. The output dose per MU (d/MU) of a therapeutic radiation beam is traditionally calibrated under specific reference conditions. These conditions include beam energy, field size, suitable depth in water or water equivalent phantom in a low dose gradient region with known relative depth dose, and source to point of calibration distance. Treatment field settings usually differ from these reference conditions leading to a different d/MU that needs to be determined for delivering the prescribed dose. For passively scattered proton beams, the proton specific parameters, which need to be defined, are related to the energy, lateral scatterers, range modulating wheel, spread out Bragg peak (SOBP) width, thickness of any range shifter, the depth dose value relative to the normalization point in the SOBP, and scatter both from the range compensator and inhomogeneity in the patient. Following the custom for photons or electrons, a set of proton dosimetry factors, representing the changes in the d/MU relative to a reference condition, can be defined as the relative output factor (ROF), SOBP factor (SOBPF), range shifter factor (RSF), SOBP off-center factor (SOBPOCF), off-center ratio (OCR), inverse square factor (ISF), field size factor (FSF), and compensator and patient scatter factor (CPSF). The ROF, SOBPF, and RSF are the major contributors to the d/MU and were measured using an ion chamber in water tank during the clinical commissioning of each beam to create a dosimetry beam data table to be used for calculating the monitor units. The following simple formula is found to provide an independent method to determine the d/MU at the point of interest (POI) in the patient, namely, (d/MU) = ROF SOBPF. RSF SOBPOCF.OCR.FSF.ISF.CPSF. The monitor units for delivering the intended dose (D) to the POI can be obtained from MU = D / (d/MU). The accuracy and robustness of the above formula were validated by calculating the d/MU in water for many different combinations of beam parameters and comparing it with the corresponding measured d/MU by an ion chamber in a water or water/plastic phantom. This procedure has been in use for MU calculation for patient treatment fields at our facility since May 2006. The differences in the calculated and measured values of the d/MU for 623 distinct fields used for patient treatment during the period of May 2006 to February 2007 are within 2% for 99% of these fields. The authors conclude that an intuitive formula similar to the one used for monitor unit calculation of therapeutic photon beams can be used to compute the monitor units of passively scattered proton therapy beams.

MeSH terms

  • Humans
  • Male
  • Neoplasms / radiotherapy
  • Phantoms, Imaging
  • Proton Therapy*
  • Radiation Dosage*
  • Radiometry / methods*
  • Radiotherapy Dosage

Substances

  • Protons