Photolysis-assisted, long-path FT-IR detection of air pollutants in the presence of water and carbon dioxide

Talanta. 2007 Jan 15;71(1):149-54. doi: 10.1016/j.talanta.2006.03.033. Epub 2006 Apr 27.

Abstract

Seven important air pollutants have been investigated by photolysis-assisted FT-IR spectroscopy. This technique renders invisible the spectra of water and carbon dioxide, which are two of the main concerns in long-path infrared spectroscopy. A cell, equipped with a UV lamp, was used to oxidise the analyte in the air sample and the spectrum recorded was used as a new background for the original sample spectrum. The optimum UV irradiation time and correctness of the concentrations were determined for this technique and compared with those from traditional methods. The signal-to-noise (S/N) ratios of the so-called "shadow spectra" were better than, or at least comparable to, the S/N ratios in the absorbance spectra obtained by using as background an air or an evacuated cell reference and subtraction of the spectra of water and carbon dioxide from a spectral library. The detection limits for the volatile organic compounds investigated have been improved by using this new method in which an appropriate background spectrum can be obtained quickly. The limitations of the method are that it cannot be applied to non-UV reactive compounds, such as methane, and the detection limits can be appreciably degraded when bands due to ozone in the shadow spectra overlap with those of the compounds under investigation.