The elucidation of structures of glutathione (GSH) complexes play an important role in the fundamental understanding of biochemical pathways of metal ion deactivation in plants. This article attempts to feature key studies for stoichiometry of metal complexes with glutathione and its constituent amino acids to obtain a better understanding of the different metal affinities of the complexation sites of glutathione. The SEC-ICP-MS experiments have indicated that oxidation process of glutathione was accelerated by metal ion presence in following order Cu(+), Pb(2+) and Cd(2+). The redox activity of metal ions was confirmed by ESI-MS experiments, which allowed to observe formation of glutathione disulphide (GSSG) in time. The stoichiometry of Cd(2+), Cu(+) and Pb(2+) complexes with GSH was defined by observing the isotope pattern of investigated metals and hydrogen loss or transfer during binding. The complexes with metal bound to sulphur of 1:1 and 1:2 stoichiometry were found in case of cadmium and lead. The number of hydrogen atoms lost during metal binding and the SEC-ESI-MS results allowed to elucidate that copper is bound by GSSG in ratio 1:1 and 1:2. Additionally, size exclusion chromatography coupled to electrospray MS allowed to differentiate more stable complexes from weak ones that could be created in the gas phase.