Because of the heterogeneity of natural landscapes, animals have to move through various types of areas that are more or less suitable with respect to their current needs. The locations of the profitable places actually used, which may be only a subset of the whole set of suitable areas available, are usually unknown, but can be inferred from movement analysis by assuming that these places correspond to the limited areas where the animals spend more time than elsewhere. Identifying these intensively used areas makes it possible, through subsequent analyses, to address both how they are distributed with respect to key habitat features, and the underlying behavioral mechanisms used to find these areas and capitalize on such habitats. We critically reviewed the few previously published methods to detect changes in movement behavior likely to occur when an animal enters a profitable place. As all of them appeared to be too narrowly tuned to specific situations, we designed a new, easy-to-use method based on the time spent in the vicinity of successive path locations. We used computer simulations to show that our method is both quite general and robust to noisy data.