The role of the tetrazole moiety in the binding of aryl thiotetrazolylacetanilides with HIV-1 wild type and K103N/Y181C double mutant reverse transcriptases was explored. Different acyclic, cyclic and heterocyclic replacements were investigated in order to evaluate the conformational and electronic contribution of the tetrazole ring to the binding of the inhibitors in the NNRTI pocket. The replacement of the tetrazole by a pyrazolyl group led to reversal of selectivity, providing inhibitors with excellent potency against the double mutant reverse transcriptase.