We investigated the mechanisms that lead to the production of proinflammatory mediators by human monocytes when these cells are exposed in vitro to live Borrelia burgdorferi spirochetes. We first focused on myeloid differentiation primary response protein 88 (MyD88), an adapter molecule that is essential in the Toll-like receptor (TLR) pathway. Real-time PCR, flow cytometry, and confocal microscopy experiments revealed that MyD88 was maximally expressed in THP-1 cells after 24-h stimulation of these cells with live B. burgdorferi. Silencing of the MYD88 gene by using small interfering RNA resulted in 24%, 35%, and 84% down-modulation of the production of tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and IL-6, respectively, in THP-1 cells stimulated with live B. burgdorferi. Specific silencing of the TLR1, TLR2, or TLR5 gene by RNA interference further revealed that silencing of the TLR1 and TLR2 genes alone or combined, but not the TLR5 gene, caused a downregulation of IL-6, IL-8, and TNF-alpha in live B. burgdorferi-stimulated THP-1 cells. Overall, similar results were obtained for THP-1 cells stimulated with purified lipoproteins. Our results indicate that the TLR pathway mediates, at least in part, the release of inflammatory mediators in human monocytes stimulated with live B. burgdorferi spirochetes and furthermore suggest that the TLR-dependent interaction between these cells and live spirochetes is mediated by spirochetal lipoproteins but not by flagellin.