Human cognition is thought to be mediated by large-scale interactions between distant sites in the neocortex. Synchronization between different cortical areas has been suggested as one possible mechanism for corticocortical interaction. Here, we report robust, directional cross-frequency synchronization between distant sensorimotor sites in human neocortex during a movement task. In four subjects, electrocorticographic recordings from the cortical surface revealed a low-frequency rhythm (10-13 Hz) that combined with a higher frequency (77-82 Hz) in a ventral region of the premotor cortex to produce a third rhythm at the sum of these two frequencies in a distant motor site. Such cross-frequency coupling implies a nonlinear interaction between these cortical sites. These findings demonstrate that task-specific, phase-phase coupling can support communication between distant areas of the human neocortex.