Diamond-Blackfan anemia (DBA), a rare congenital erythroblastopenia, has recently become a paradigm for a growing set of genetic diseases linked to mutations in genes encoding ribosomal proteins or factors involved in ribosome biogenesis. Recent studies of the structure and the function of ribosomal proteins affected in DBA indicate that their mutation in DBA primarily impacts ribosome biogenesis. Accordingly, cells from DBA patients display anomalies in the maturation of ribosomal RNAs. The explanation of this unexpected link between ribosome biogenesis, a ubiquitous process, and a disease mostly affecting erythroid differentiation may stem in part from the emerging concept of ribosomal stress response, a signaling pathway triggering cell cycle arrest in response to a defect in ribosome synthesis. Future studies of DBA and other diseases related to defects in ribosome biogenesis are likely to rapidly provide important insights into the regulatory mechanisms linking cell cycle progression to this major metabolic pathway.