Pressure-overload magnitude-dependence of the anti-hypertrophic efficacy of PDE5A inhibition

J Mol Cell Cardiol. 2009 Apr;46(4):560-7. doi: 10.1016/j.yjmcc.2008.12.008. Epub 2008 Dec 29.

Abstract

Increased myocardial cGMP, achieved by enhancing cyclase activity or impeding cGMP hydrolysis by phosphodiesterase type-5 (PDE5A), suppresses cellular and whole organ hypertrophy. The efficacy of the latter also requires cyclase stimulation and may depend upon co-activation of maladaptive signaling suppressible by cGMP-stimulated kinase (cGK-1). Thus, PDE5A inhibitors could paradoxically be more effective against higher than lower magnitudes of pressure-overload stress. To test this, mice were subjected to severe or moderate trans-aortic constriction (sTAC, mTAC) for 6 wks +/-co-treatment with oral sildenafil (SIL 200 mg/kg/d). LV mass (LVM) rose 130% after 3-wks sTAC and SIL blunted this by 50%. With mTAC, LVM rose 56% at 3 wks but was unaffected by SIL, whereas a 90% increase in LVM after 6 wks was suppressed by SIL. SIL minimally altered LV function and remodeling with mTAC until later stages that stimulated more hypertrophy and remodeling. SIL stimulated cGK-1 activity similarly at 3 and 6 wks of mTAC. However, pathologic stress signaling (e.g. calcineurin, ERK-MAPkinase) was little activated after 3-wk mTAC, unlike sTAC or later stage mTAC when activity increased and SIL suppressed it. With modest hypertrophy (3-wk mTAC), GSK3beta and Akt phosphorylation were unaltered but SIL enhanced it. However, with more severe hypertrophy (6-wk mTAC and 3-wk sTAC), both kinases were highly phosphorylated and SIL treatment reduced it. Thus, PDE5A-inhibition counters cardiac pressure-overload stress remodeling more effectively at higher than lower magnitude stress, coupled to pathologic signaling activation targetable by cGK-1 stimulation. Such regulation could impact responses of varying disease models to PDE5A inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / enzymology*
  • Aorta / pathology*
  • Constriction, Pathologic / enzymology
  • Cyclic GMP-Dependent Protein Kinases / metabolism
  • Cyclic Nucleotide Phosphodiesterases, Type 5
  • Enzyme Activation / drug effects
  • Glycogen Synthase Kinase 3 / metabolism
  • Glycogen Synthase Kinase 3 beta
  • Hypertrophy
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Phosphodiesterase 5 Inhibitors*
  • Phosphorylation / drug effects
  • Piperazines / pharmacology
  • Pressure*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Purines / pharmacology
  • Signal Transduction / drug effects
  • Sildenafil Citrate
  • Stress, Physiological* / drug effects
  • Sulfones / pharmacology
  • Time Factors

Substances

  • Phosphodiesterase 5 Inhibitors
  • Piperazines
  • Purines
  • Sulfones
  • Sildenafil Citrate
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, mouse
  • Proto-Oncogene Proteins c-akt
  • Cyclic GMP-Dependent Protein Kinases
  • Glycogen Synthase Kinase 3
  • Cyclic Nucleotide Phosphodiesterases, Type 5
  • Pde5a protein, mouse