CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion

J Mol Cell Cardiol. 2009 May;46(5):612-20. doi: 10.1016/j.yjmcc.2008.12.014. Epub 2009 Jan 7.

Abstract

Preventive treatment with cannabinoid agonists has been reported to reduce the infarct size in a mouse model of myocardial ischemia/reperfusion. Here we investigated the possible cardioprotective effect of selective CB(2) cannabinoid receptor activation during ischemia. We performed left coronary artery ligature in C57Bl/6 mice for 30 min, followed by 24 h of reperfusion. Five minutes before reperfusion, mice received intraperitoneal injection of the CB(2) selective agonist JWH-133 (20 mg/kg) or vehicle. Infarct size was assessed histologically and by cardiac troponin I (cTnI) ELISA. Immunohistochemical analysis of leukocyte infiltration, oxidative stress in situ quantification, real-time RT-PCR analysis of inflammatory mediators as well as western blots for kinase phosphorylation was also performed. In addition, we studied chemotaxis and integrin expression of human neutrophils in vitro. JWH-133 significantly reduced the infarct size (I/area at risk: 19.27%+/-1.91) as compared to vehicle-treated mice (31.77%+/-2.7). This was associated with a reduction of oxidative stress and neutrophil infiltration in the infarcted myocardium, whereas activation of ERK 1/2 and STAT-3 was increased. Preinjection of PI3K inhibitor LY294002, MEK 1/2 inhibitor U0126 and JAK-2 inhibitor AG-490 partially abrogated the JWH-133 mediated infarct size reduction. No changes in cardiac CXCL1, CXCL2, CCL3, TNF-alpha, and ICAM-1 expression levels were found. Furthermore, JWH-133 inhibited the TNF-alpha induced chemotaxis and integrin CD18/CD11b (Mac-1) upregulation on human neutrophils. Our data suggest that JWH-133 administration during ischemia reduces the infarct size in a mouse model of myocardial ischemia/reperfusion through a direct cardioprotective activity on cardiomyocytes and neutrophils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD11b Antigen / metabolism
  • Cannabinoids / administration & dosage
  • Cannabinoids / pharmacology
  • Cell Movement / drug effects
  • Chemotactic Factors / metabolism
  • Disease Models, Animal
  • Humans
  • Intercellular Adhesion Molecule-1 / metabolism
  • Intracellular Space / drug effects
  • Intracellular Space / metabolism
  • Mice
  • Myocardial Infarction / complications
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Reperfusion Injury / complications
  • Myocardial Reperfusion Injury / enzymology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocardium / enzymology
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Neutrophils / cytology
  • Neutrophils / drug effects
  • Oxidative Stress / drug effects
  • Reactive Oxygen Species / metabolism
  • Receptor, Cannabinoid, CB2 / agonists
  • Receptor, Cannabinoid, CB2 / metabolism*
  • Signal Transduction / drug effects
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • CD11b Antigen
  • Cannabinoids
  • Chemotactic Factors
  • Reactive Oxygen Species
  • Receptor, Cannabinoid, CB2
  • Tumor Necrosis Factor-alpha
  • Intercellular Adhesion Molecule-1
  • 1,1-dimethylbutyl-1-deoxy-Delta(9)-THC