Matrix metalloproteinase-9 (MMP-9)/gelatinase B plays an important role in neutrophil infiltration during inflammation and cyclooxygenases (COX-1 and COX-2) and their products are important regulators of inflammation. Recently, we reported that a genetic lack of MMP-9 impairs neutrophil infiltration during early zymosan-induced peritonitis but at later stages (> 24 hr) neutrophils persist in the peritoneal cavity. Here we show that this is the result of impaired apoptosis of MMP-9(-/-)-derived leucocytes. As enhanced COX-1 expression was reported in MMP-9(-/-) mice, we evaluated the hypothesis that altered COX expression induced the above phenomenon as COX-dependent prostaglandins can act either anti-apoptotically (PGE(2)) or pro-apoptotically (PGD(2)). The current data demonstrate that messenger RNA and protein expression of both COX isoforms and their activities are increased in MMP-9(-/-) mice during late peritonitis. Application of selective COX inhibitors revealed enhanced COX-1-dependent PGE(2) production and impaired COX-2-dependent PGD(2) synthesis in MMP-9(-/-) mice. Most importantly, inhibition of COX-1 abolished prolonged neutrophil accumulation in the peritoneal cavity of MMP-9(-/-) mice and increased apoptosis of inflammatory leucocytes. Similarly, weaker apoptosis of MMP-9(-/-) bone marrow neutrophils treated in vitro with zymosan was reversed by COX-1 inhibition. In conclusion, enhanced COX-1 expression is responsible for persistent neutrophil presence in the peritoneum of MMP-9(-/-) mice because of increased synthesis of anti-apoptotic PGE(2). In non-transgenic mice, however, inflammatory leucocytes die apoptotically in the late stages of peritonitis as a result of COX-2-dependent PGD(2) activity. Overall, we show a dependence of COX expression on the presence of MMP-9.