Polymeric polyurethane nanofabrics doped by zinc tetraphenylporphyrin (ZnTPP) and/or zinc phthalocyanine (ZnPc) photosensitizers were prepared by the electrospinning method and characterized by microscopic methods, steady-state and time-resolved fluorescence, and absorption spectroscopy. Nanofabrics doped by both ZnTPP and ZnPc efficiently harvest visible light to generate triplet states and singlet oxygen O2(1Delta(g)) with a lifetime of about 15 micros in air atmosphere. The energy transfer between the excited singlet states of ZnTPP and ground states of ZnPc is described in details. All nanofabrics have bactericidal surfaces and photooxidize inorganic and organic substrates. ZnTPP and ZnPc in the polyurethane nanofabrics are less photostable than incorporated free-base tetraphenylporphyrin (TPP).