Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation.
Materials and methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG on animal body weight was addressed.
Results: EGCG inhibited FASN activity, induced apoptosis and caused a marked decrease of human epidermal growth factor receptor 2 (HER2), phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular (signal)-regulated kinase (ERK) 1/2 proteins, in breast cancer cells. EGCG did not induce a stimulatory effect on CPT-1 activity in vitro (84% of control), or on animal body weight in vivo (99% of control).
Conclusion: EGCG is a FASN inhibitor with anticancer activity which does not exhibit cross-activation of fatty acid oxidation and does not induce weight loss, suggesting its potential use as an anticancer drug.