Objectives: To assess exposure to polycyclic aromatic hydrocarbons (PAHs) using 13 unmetabolised PAHs (U-PAHs) and 12 monohydroxy metabolites (OHPAHs) in urine, and to compare the utility of these biomarkers.
Methods: 55 male Polish coke oven workers collected urine spot samples after a workshift. U-PAHs (naphthalene, acenaphtylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene) were determined by automatic solid phase micro-extraction followed by gas chromatography/mass spectrometry (GC/MS). OHPAHs (1- and 2-hydroxynaphthalene, 2- and 9-hydroxyfluorene, 4-, 9-, 3-, 1- and 2-hydroxyphenanthrene, 1-hydroxypyrene, 6-hydroxychrysene, 3-hydroxybenzo[a]pyrene) were determined, after liquid/liquid extraction and derivatisation, by GC/MS.
Results: U-PAHs from naphthalene to chrysene were found in 100% of samples, and heavier U-PAHs in 7-22% of samples. OHPAHs up to 1-hydroxypyrene were found in 100% of samples, while 6-hydroxychrysene and 3-hydroxybenzo[a]pyrene were always below the quantification limit. Median naphthalene, phenanthrene, pyrene, chrysene and benzo[a]anthracene levels were 0.806, 0.721, 0.020, 0.032 and 0.035 microg/l, while hydroxynaphthalenes, hydroxyphenanthrenes and 1-hydroxypyrene levels were 81.1, 18.9 and 15.4 microg/l. For each chemical, the ratio between U-PAH and the corresponding OHPAH ranged from 1:26 to 1:1000. Significant correlations between logged values of U-PAHs and OHPAHs, between U-PAHs, and between OHPAHs were found, with Pearson's r ranging from 0.27 to 0.97.
Conclusion: Current analytical techniques allow specific and simultaneous measurement of several urinary determinants of PAHs in humans. The results of these measurements support the use of U-PAHs as biomarkers of exposure and suggest the spectrum of chemicals to be investigated, including carcinogenic chrysene and benzo[a]anthracene, should be widened.