Expression and biological significance of c-FLIP in human hepatocellular carcinomas

J Exp Clin Cancer Res. 2009 Feb 20;28(1):24. doi: 10.1186/1756-9966-28-24.

Abstract

Background: c-FLIP can be considered as a tumor-progression factor in regard to its anti-apoptotic functions. In the present study, we intended to investigate the expression of c-FLIP in human HCC tissues, and its relation with drug-induced cell apoptosis through the specific inhibition of c-FLIP expression by siRNA in 7721 cells.

Methods: c-FLIP expression was quantified immunohistochemically in HCC tissues(eighty-six cases), and corresponding noncancerous tissues (fifty-seven cases). Patients with HCC were followed up for cancer recurrence. Then, the c-FLIP gene was silenced with specific siRNA in 7721 HCC cells. c-FLIP expression was detected by RT-PCR, Western Blot and immunocytochemical staining. The cellular viability and cell apoptosis were assayed in vitro with cells treated with doxorubicin.

Results: Positive immunostaining was detected for c-FLIP in 83.72% (72/86) human HCC tissues, 14.81% (4/27) hepatic cirrhosis, 11.11% (2/18) hepatic hemangioma tissues, and absent in normal hepatic tissues. The overexpression(more than 50%) of c-FLIP in HCC adversely affected the recurrence-free survival. Through c-FLIP gene silencing with siRNA, the expressions of c-FLIP mRNA and protein were remarkably down-regulated in 7721 HCC cells. And doxorubicin showed apparent inhibition on cell proliferations, and induced more apoptosis.

Conclusion: These results indicate that c-FLIP is frequently expressed in human HCCs, and its overexpression implied a lesser probability of recurrence-free survival. The specific silencing of c-FLIP gene can apparently up-regulate drug-induced HCC cell apoptosis, and may have therapeutic potential for the treatment of human HCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Apoptosis / drug effects
  • Apoptosis / genetics
  • CASP8 and FADD-Like Apoptosis Regulating Protein / biosynthesis*
  • CASP8 and FADD-Like Apoptosis Regulating Protein / genetics
  • CASP8 and FADD-Like Apoptosis Regulating Protein / metabolism
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism*
  • Carcinoma, Hepatocellular / pathology
  • Doxorubicin / pharmacology
  • Female
  • Gene Expression
  • Gene Silencing
  • Humans
  • Immunohistochemistry
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism*
  • Liver Neoplasms / pathology
  • Male
  • Middle Aged
  • Plasmids / genetics
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • RNA, Small Interfering / genetics
  • Transfection

Substances

  • CASP8 and FADD-Like Apoptosis Regulating Protein
  • CFLAR protein, human
  • RNA, Messenger
  • RNA, Small Interfering
  • Doxorubicin