Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells

Breast Cancer Res Treat. 2010 Jan;119(2):271-81. doi: 10.1007/s10549-009-0343-z. Epub 2009 Feb 24.

Abstract

Inhibition or downregulation of Bcl-2 represents a new therapeutic approach to by-pass chemoresistance in cancer cells. Therefore, we explored the potential of this approach in breast cancer cells. Cisplatin and paclitaxel induced apoptosis in a dose-dependent manner in MCF-7 (drug-sensitive) and MDA-MB-231 (drug-insensitive) cells. Furthermore, when we transiently silenced Bcl-2, both cisplatin and paclitaxel induced apoptosis more than parental cells. Dose dependent induction of apoptosis by drugs was enhanced by the pre-treatment of these cells with HA14-1, a Bcl-2 inhibitor. Although the effect of cisplatin was significant on both cell lines, the effect of paclitaxel was much less potent only in MDA-MB-231 cells. To further understand the distinct role of drugs in MDA-MB-231 cells pretreated with HA14-1, caspases and Bcl-2 family proteins were studied. The apoptotic effect of cisplatin with or without HA14-1 pre-treatment is shown to be caspase-dependent. Among pro-apoptotic Bcl-2 proteins, Bax and Puma were found to be up-regulated whereas Bcl-2 and Bcl-x(L) were down-regulated when cells were pretreated with HA14-1 followed by paclitaxel or cisplatin. Enforced Bcl-2 expression in MDA-MB-231 cells abrogated the sensitizing effect of HA14-1 in cisplatin induced apoptosis. These results suggest that the potentiating effect of HA14-1 is drug and cell type specific and may not only depend on the inhibition of Bcl-2. Importantly, alteration of other pro-apoptotic or anti-apoptotic Bcl-2 family members may dictate the apoptotic response when HA14-1 is combined with chemotherapeutic drugs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Apoptosis / drug effects*
  • Apoptosis Regulatory Proteins / metabolism
  • Benzopyrans / pharmacology
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Caspases / metabolism
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cisplatin / pharmacology
  • Dose-Response Relationship, Drug
  • Drug Resistance, Neoplasm / drug effects*
  • Female
  • Humans
  • Nitriles / pharmacology
  • Paclitaxel / pharmacology
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • RNA Interference
  • Time Factors
  • Transfection
  • bcl-2-Associated X Protein / metabolism
  • bcl-X Protein / metabolism

Substances

  • Apoptosis Regulatory Proteins
  • BAX protein, human
  • BBC3 protein, human
  • BCL2L1 protein, human
  • Benzopyrans
  • Nitriles
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • bcl-X Protein
  • ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate
  • Caspases
  • Paclitaxel
  • Cisplatin