Background: Despite surveillance efforts, unexpected and serious adverse drug reactions (ADRs) repeatedly occur after marketing. The aim of this article is to analyse ADRs reported by available ADR signal detection approaches and to explore which information about new and unexpected ADRs these approaches have detected.
Methods: We selected three therapeutic cases for the review: antibiotics for systemic use, non-steroidal anti-inflammatory medicines (NSAID) and selective serotonin re-uptake inhibitors (SSRI). These groups are widely used and represent different therapeutic classes of medicines. The ADR studies were identified through literature search in Medline and Embase. The search was conducted in July 2007. For each therapeutic case, we analysed the time of publication, the strengths of the evidence of safety in the different approaches, reported ADRs and whether the studies have produced new information about ADRs compared to the information available at the time of marketing.
Results: 79 studies were eligible for inclusion in the analysis: 23 antibiotics studies, 35 NSAID studies, 20 SSRI studies. Studies were mainly published from the end of the 1990s and onwards. Although the drugs were launched in different decades, both analytical and observational approaches to ADR studies were similar for all three therapeutic cases: antibiotics, NSAIDs and SSRIs. The studies primarily dealt with analyses of ADRs of the type A and B and to a lesser extent C and D, cf. Rawlins' classification system. The therapeutic cases provided similar results with regard to detecting information about new ADRs despite different time periods and organs attacked. Approaches ranging higher in the evidence hierarchy provided information about risks of already known or expected ADRs, while information about new and previously unknown ADRs was only detected by case reports, the lowest ranking approach in the evidence hierarchy.
Conclusion: Although the medicines were launched in different decades, approaches to the ADR studies were similar for all three therapeutic cases: antibiotics, NSAIDs and SSRIs. Both descriptive and analytical designs were applied. Despite the fact that analytical studies rank higher in the evidence hierarchy, only the lower ranking descriptive case reports/spontaneous reports provided information about new and previously undetected ADRs. This review underscores the importance of systems for spontaneous reporting of ADRs. Therefore, spontaneous reporting should be encouraged further and the information in ADR databases should continuously be subjected to systematic analysis.