The electrical properties of vertically aligned silicon nanowires doped by ion implantation are studied in this paper by a combination of electron beam-induced current imaging and two terminal current-voltage measurements. By varying the implantation parameters in several process steps, uniform p- and n-doping profiles as well as p-n junctions along the nanowire axis are realized. The effective doping is demonstrated by electron beam-induced current imaging on single nanowires, and current-voltage measurements show their well-defined rectifying behavior.