In situ mechanical properties of the chondrocyte cytoplasm and nucleus

J Biomech. 2009 May 11;42(7):873-7. doi: 10.1016/j.jbiomech.2009.01.024. Epub 2009 Mar 3.

Abstract

The way in which the nucleus experiences mechanical forces has important implications for understanding mechanotransduction. Knowledge of nuclear material properties and, specifically, their relationship to the properties of the bulk cell can help determine if the nucleus directly experiences mechanical loads, or if it is a signal transduction mechanism secondary to cell membrane deformation that leads to altered gene expression. Prior work measuring nuclear material properties using micropipette aspiration suggests that the nucleus is substantially stiffer than the bulk cell [Guilak, F., Tedrow, J.R., Burgkart, R., 2000. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781-786], whereas recent work with unconfined compression of single chondrocytes showed a nearly one-to-one correlation between cellular and nuclear strains [Leipzig, N.D., Athanasiou, K.A., 2008. Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys. J. 94, 2412-2422]. In this study, a linearly elastic finite element model of the cell with a nuclear inclusion was used to simulate the unconfined compression data. Cytoplasmic and nuclear stiffnesses were varied from 1 to 7 kPa for several combinations of cytoplasmic and nuclear Poisson's ratios. It was found that the experimental data were best fit when the ratio of cytoplasmic to nuclear stiffness was 1.4, and both cytoplasm and nucleus were modeled as incompressible. The cytoplasmic to nuclear stiffness ratio is significantly lower than prior reports for isolated nuclei. These results suggest that the nucleus may behave mechanically different in situ than when isolated.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Nucleus*
  • Chondrocytes*
  • Cytoplasm*
  • Finite Element Analysis
  • Stress, Mechanical