Helper T cells are known to mediate hepatic ischemia/reperfusion (I/R) injury. However, the precise mechanisms and subsets of CD4(+) T cells that contribute to this injury are still controversial. Therefore, we sought to determine the contributions of different CD4(+) T cell subsets during hepatic I/R injury. Wild-type, OT-II, or T cell receptor (TCR)-delta-deficient mice were subjected to 90 min of partial hepatic ischemia followed by 8 h of reperfusion. Additionally, wild-type mice were pretreated with anti-CD1d, -NK1.1, or -IL-2R-alpha antibodies before I/R injury. OT-II mice had diminished liver injury compared with wild-type mice, implicating that antigen-dependent activation of CD4(+) T cells through TCRs is involved in hepatic I/R injury. TCR-delta knockout mice had decreased hepatic neutrophil accumulation, suggesting that gammadelta T cells regulate neutrophil recruitment. We found that natural killer T (NKT) cells, but not NK cells, contribute to hepatic I/R injury via CD1d-dependent activation of their TCRs, as depletion of NKT cells by anti-CD1d antibody or depletion of both NKT cells and NK cells by anti-NK1.1 attenuated liver injury. Although regulatory T cells (Treg) are known to suppress T cell-dependent inflammation, depletion of Treg cells had little effect on hepatic I/R injury. The data suggest that antigen-dependent activation of CD4(+) T cells contributes to hepatic I/R injury. Among the subsets of CD4(+) T cells, it appears that gammadelta T cells contribute to neutrophil recruitment and that NKT cells directly injure the liver. In contrast, NK cells and Treg have little effects on hepatic I/R injury.