Worldwide, approximately 170 million people are chronically infected with hepatitis C virus (HCV), and chronic infection frequently progresses to serious liver disease, including cirrhosis and hepatocellular carcinoma. GB virus B (GBV-B), the virus phylogenetically most closely related to HCV, causes hepatitis in tamarins. We have demonstrated the suitability of the tamarin as a host for GBV-B and as a surrogate nonhuman primate model for HCV infection, and we have initiated studies of GBV-B infection in a closely related species, the common marmoset (Callithrix jacchus). Here, we demonstrate that marmosets exhibit two phenotypes upon infection with GBV-B: the susceptible phenotype and the partially resistant phenotype. In addition, we identify changes that may correlate with adaptation of the virus to the partially resistant host. GBV-B was serially passaged five times through 14 marmosets as one lineage and two times through 6 marmosets as a second lineage. Virus adapted to the marmosets and eventually exhibited robust infections in two separate lineages, lineages 1 and 2. A third lineage was initiated with a molecular clone, and again, susceptible and partially resistant phenotypes were observed. Three isolates were fully sequenced (from lineage 1), and 21 nucleotide changes were observed, with six amino acid changes. We speculate that the marmoset partially resistant phenotype may be due to a polymorphism in the marmoset population that affects critical virus-host interactions and that wild-type GBV-B is capable of rapidly adapting to this altered host.