Myocardial 3D strain calculation by combining cine displacement encoding with stimulated echoes (DENSE) and cine strain encoding (SENC) imaging

Magn Reson Med. 2009 Jul;62(1):77-84. doi: 10.1002/mrm.21984.

Abstract

Three-dimensional (3D) strain maps of the myocardium provide a coordinate-system-independent quantification of myocardial deformation and kinematics. We combine two MRI techniques, displacement encoding with stimulated echoes (DENSE) and strain encoding (SENC), to fully formulate a 3D strain map in a single slice of myocardium. The method utilizes 2D DENSE in-plane displacement measurements in two adjacent slices in conjunction with a single SENC through-plane strain measure to calculate the 3D strain tensor. Six volunteers were imaged and the technique demonstrated 3D strain measures in all volunteers that are consistent with those reported in the literature from 3D tagging. The mean peak strain (+/- standard deviation [SD]) for six healthy volunteers for the first, second, and third principal strains are 0.42 +/-0.11, -0.10 +/-0.03, and -0.21 +/-0.02, respectively. These results show that this technique is capable of reliably quantifying 3D cardiac strain.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Echo-Planar Imaging / methods*
  • Elastic Modulus / physiology
  • Elasticity Imaging Techniques / methods*
  • Heart / physiology*
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging, Cine / methods*
  • Motion
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Stress, Mechanical