Objective and design: Insulin resistant Otsuka-Long-Evans-Tokushima Fatty (OLETF) and its control Long-Evans Tokushima Ohtsuka (LETO) rats were used to generate a model for acute hyperuricemia. Upon the onset of insulin resistance OLETF rats were feed with high-purine diet, and the development of acute hyperuricemic renal injury and gouty-like lesions was monitored. Rosiglitazone was also administered to demonstrate whether improved insulin sensitivity would prevent high-purine diet induced renal injury and gouty-like lesions.
Results: Otsuka-Long-Evans-Tokushima Fatty rats showed significant higher incidence of hyperuricemia as compared to the control LETO rats (77 vs. 36.1%, P < 0.05), indicating that insulin resistance exacerbates the development of hyperuricemia following high-purine load. Consistent with this observation, improvement of insulin sensitivity by administration of rosiglitazone significantly reduced high-purine diet induced renal injury and gouty-like lesions. It was found that insulin resistance is associated with impaired capability for maintaining the homeostasis of renal uric acid excretion and reabsorption. Upon high-purine load, insulin resistance enhances urate reabsorption as manifested by up-regulated URAT1 expression and reduces urate excretion as characterized by down-regulated UAT expression.
Conclusions: Our data demonstrated strong evidence indicating that insulin resistance acts as an independent risk factor predisposing OLETF rats more susceptible to the development of hyperuricemia and gouty arthritis following high-purine load.