Objective: Both genetic and epigenetic factors play an important role in the pathogenesis of lupus. The aim of this study was to examine methyl-CpG-binding protein 2 gene (MECP2) polymorphisms in a large cohort of patients with lupus and control subjects, and to determine the functional consequences of the lupus-associated MECP2 haplotype.
Methods: We genotyped 18 single-nucleotide polymorphisms within MECP2, located on chromosome Xq28, in a large cohort of patients with lupus and control subjects of European descent. We studied the functional effects of the lupus-associated MECP2 haplotype by determining gene expression profiles in B cell lines in female lupus patients with and those without the lupus-associated MECP2 risk haplotype.
Results: We confirmed, replicated, and extended the genetic association between lupus and genetic markers within MECP2 in a large independent cohort of lupus patients and control subjects of European descent (odds ratio 1.35, P = 6.65 x 10(-11)). MECP2 is a dichotomous transcription regulator that either activates or represses gene expression. We identified 128 genes that are differentially expressed in lupus patients with the disease-associated MECP2 haplotype; most ( approximately 81%) were up-regulated. Genes that were up-regulated had significantly more CpG islands in their promoter regions compared with genes that were down-regulated. Gene ontology analysis using the differentially expressed genes revealed significant association with epigenetic regulatory mechanisms, suggesting that these genes are targets for MECP2 regulation in B cells. Furthermore, at least 13 of the 104 up-regulated genes are regulated by interferon. The disease-risk MECP2 haplotype was associated with increased expression of the MECP2 transcription coactivator CREB1 and decreased expression of the corepressor histone deacetylase 1.
Conclusion: Polymorphism in the MECP2 locus is associated with lupus and, at least in part, contributes to the interferon signature observed in lupus patients.