Changes in the luminal NaCl concentration ([NaCl]) at the macula densa (MD) modulate the tubuloglomerular feedback (TGF) responses via an affect on the release of nitric oxide (NO). This study was performed in a newly established mouse macula densa cell line (NE-MD) to investigate the effects of lowering [NaCl] on the neuronal NO synthase (nNOS) protein expression and L-arginine (Arg)-induced NO release. Expression of nNOS protein and release of NO were evaluated by Western blot analysis and an NO-sensitive electrode, respectively. Intracellular pH (pH(i)) was monitored by the BCECF assay. Although there was weak staining of the nNOS protein expression, L-Arg-induced NO generation was negligible in normal (140 mM NaCl) solution. Both were significantly (P < 0.05) increased either in the presence of furosemide (12 microM), an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter, or in a low (23 mM) Cl(-) solution. Furosemide- and low Cl(-)-induced NO generation was completely inhibited by 50 microM 7-nitroindasole (7-NI), a nNOS inhibitor. Moreover, these increases were significantly (P < 0.05) inhibited by the addition of 100 microM amiloride, an inhibitor of the Na(+)/H(+) exchanger, or by its analogue 5-(N)-ethyl-N-isopropyl amiloride (EIPA), and also at a lower pH of 7.1. Furthermore, nNOS expression and NO release were not stimulated in as low as 19 mM Na(+) solution. In conclusion, low [Cl(-)], but not low [Na(+)] in the lumen at the MD, increased nNOS protein expression and NO generation. Changes in the luminal [NaCl] may modulate the TGF system via an effect on the NO generation from the MD.