Increased vascular endothelial growth factor-C expression is insufficient to induce lymphatic metastasis in human soft-tissue sarcomas

Clin Cancer Res. 2009 Apr 15;15(8):2637-46. doi: 10.1158/1078-0432.CCR-08-2442. Epub 2009 Apr 7.

Abstract

Purpose: Unlike carcinomas, soft-tissue sarcoma (STS) rarely exhibit lymphatic spread. Consequently, we examined expression and function of vascular endothelial growth factor (VEGF)-C and STS-associated lymphatic vessel density (LVD) components of this process.

Experimental design: VEGF-C and VEGF-A mRNA and VEGF-C protein expression were evaluated in STS, STS cell lines, and breast cancers (reverse transcription-PCR, quantitative reverse transcription-PCR, and ELISA). STS cell conditioned medium after VEGF-C knockdown was examined for endothelial cell proliferation and migration effects (MTS and migration assays). Paraffin-embedded human lymph node-negative and lymph node-positive STS and lymph node-negative and lymph node-positive breast cancers were examined for VEGF-C, D2-40, and CD31 expression (immunohistochemistry). LVD differences were analyzed by Wilcoxon rank-sum tests.

Results: STS and breast cancer VEGF-C expression was comparable and higher than normal tissue levels. STS cells secreted functional VEGF-C: STS conditioned medium induced lymphatic endothelial cell proliferation and migration, which was abrogated by STS cell VEGF-C knockdown. STS and breast cancer intratumoral LVD was similar. STS peritumoral LVD (PT-LVD) was reduced versus breast cancer PT-LVD (P < 0.001). Significantly higher PT-LVD was observed in lymph node-positive versus lymph node-negative STS; lymphatic spreading STS subtypes also had higher LVD. STS VEGF-C expression and PT-LVD lacked correlation, and many lymph node-negative STS had high PT-LVD, suggesting complexity in this metastatic process.

Conclusions: Compared with breast cancers, STS exhibited lower PT-LVD independent of VEGF-C expression, which may underlie STS lymph node metastasis rarity. Moreover, lymphatic vessels appear necessary but not sufficient to sustain STS lymphatic spread. Examining STS "nonlymphatic" dissemination may help elucidate mechanisms of lymphatic spread, insights critically important to cancer metastasis control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Movement / physiology
  • Endothelial Cells / physiology
  • Gene Knockdown Techniques
  • Humans
  • Lymphatic Metastasis
  • Lymphatic Vessel Tumors / metabolism
  • Platelet Endothelial Cell Adhesion Molecule-1 / metabolism*
  • RNA, Small Interfering / metabolism
  • Sarcoma / metabolism
  • Sarcoma / pathology*
  • Vascular Endothelial Growth Factor C / biosynthesis*
  • Vascular Endothelial Growth Factor C / genetics

Substances

  • Platelet Endothelial Cell Adhesion Molecule-1
  • RNA, Small Interfering
  • Vascular Endothelial Growth Factor C