Pre-clinical and clinical evaluation of nuclear tracers for the molecular imaging of vulnerable atherosclerosis: an overview

Curr Med Chem. 2009;16(12):1499-511. doi: 10.2174/092986709787909596.

Abstract

Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Despite major advances in the treatment of CVD, a high proportion of CVD victims die suddenly while being apparently healthy, the great majority of these accidents being due to the rupture or erosion of a vulnerable coronary atherosclerotic plaque. A non-invasive imaging methodology allowing the early detection of vulnerable atherosclerotic plaques in selected individuals prior to the occurrence of any symptom would therefore be of great public health benefit. Nuclear imaging could allow the identification of vulnerable patients by non-invasive in vivo scintigraphic imaging following administration of a radiolabeled tracer. The purpose of this review is to provide an overview of radiotracers that have been recently evaluated for the detection of vulnerable plaques together with the biological rationale that initiated their development. Radiotracers targeted at the inflammatory process seem particularly relevant and promising. Recently, macrophage targeting allowed the experimental in vivo detection of atherosclerosis using either SPECT or PET. A few tracers have also been evaluated clinically. Targeting of apoptosis and macrophage metabolism both allowed the imaging of vulnerable plaques in carotid vessels of patients. However, nuclear imaging of vulnerable plaques at the level of coronary arteries remains challenging, mostly because of their small size and their vicinity with unbound circulating tracer. The experimental and pilot clinical studies reviewed in the present paper represent a fundamental step prior to the evaluation of the efficacy of any selected tracer for the early, non-invasive detection of vulnerable patients.

Publication types

  • Review

MeSH terms

  • Atherosclerosis / diagnosis*
  • Atherosclerosis / immunology
  • Diagnostic Imaging* / methods
  • Evaluation Studies as Topic
  • Humans
  • Nuclear Medicine* / methods
  • Positron-Emission Tomography / methods