Gonadotropin-releasing hormone (GnRH) regulates biosynthesis in the pituitary gonadotrope via a complex signaling and gene network. Small non-coding microRNAs (miRNA) can play important roles in gene expression. We investigated the microtranscriptome in the mouse L?T2 gonadotrope cell line using microarray, single molecule coincidence detection assays, hairpin real time PCR and LNA (locked nucleic acid) primer-extension PCR. Expression of nearly 200 miRNAs were detected by array and a panel of 101 hairpin real time PCR assays. Within this broad family of expressed miRNAs, GnRH induced upregulation of two miRNA products of the same primary transcript, miR-132 and miR-212, a result confirmed by single molecule, hairpin and LNA assays. Induction peaked 6h after GnRH exposure and showed no significant frequency sensitivity. Bioinformatics analysis was used to predict potential targets of each of these GnRH-regulated miRNAs. These findings suggest the importance of the microtranscriptome in gene control in the gonadotrope and implicate miR-132 and miR-212 in the regulation of GnRH-stimulated biosynthetic response.