cDNAs were cloned, sequenced and expressed which encode two different cytochrome P-450 forms of the alkane-assimilating yeast Candida maltosa, designated as P-450Cm1 and P-450Cm2. The amino acid sequences deduced were about 55% identical. Expression in Saccharomyces cerevisiae resulted in the formation of intact microsomal P-450 systems catalyzing the hydroxylation of n-hexadecane and lauric acid with significantly different substrate preferences. A massive proliferation of the endoplasmic reticulum was observed in the S. cerevisiae cells which produced P-450. Depending on the P-450 form expressed, distinctly organized stacks of paired membranes appeared and occupied considerable areas of the cytoplasm. As shown by immunoelectron microscopy for P-450Cm1, the protein expressed was highly concentrated within these newly formed membrane structures.