Combinatorial therapies for the treatment of HIV-1 infection are effective for reducing patient viral loads and slowing the progression to AIDS. Our strategy was based on an anti-HIV-1 shRNA vector system in which HIV-1 vif-shRNA was fused to a decoy TAR RNA (mini-TAR RNA) to generate vif-shRNA-decoy TAR RNA under the control of the human U6 Pol III promoter. Upon expression in human cells, the RNA molecule was cleaved into its component parts, which inhibited HIV-1 replication in a synergistic manner. This chimeric RNA expressed a dual RNA moiety and greatly enhanced the inhibition of HIV-1 replication under the production of resistant virus by short interference RNA (siRNA) in long-term culture assays. We suggest that this technique provides a practical basis for the application of siRNA-based gene therapy in the treatment of HIV/AIDS.