CXCR4 plays an essential role as the first discovered coreceptor for the entry of T cell tropic isolates of HIV-1. Blocking the surface expression of this receptor may be a potential strategy to prevent HIV-1 infection. A lentiviral vector, pLenti6/V5-S-K, expressing a SDF-KDEL fusion protein was constructed and a replication-incompetent lentiviral stock was produced. The lentiviral stock was transduced into CD34(+) hHSC and the transient expression of the recombinant protein, SDF-1, was assayed using indirect immunofluorescence. The surface expression of CXCR4 in CD34(+) hHSC pretreated with different amounts of recombinant lentiviral vectors was detected by flow cytometric analysis. A marked down-regulation of CXCR4 expression in the cells transduced with recombinant lentiviral vectors pLenti6/V5-S-K was observed by flow cytometry with PE-conjugated anti-human CXCR4 monoclonal antibodies which showed the percentages of the inhibition effects of CXCR4-SDF-1 mediated syncytium formation are presented by concentration. P24 antigen levels of cell culture supernatants were detected on the 4th, 7th, and 10th day, with 10(3) TCID50 HIV-1 infected CD34(+) hHSC to evaluate the inhibitory effect of pLenti6/V5-S-K transduction on HIV-1 infection. The cells transfected with pLenti6/V5-S-K had a significant reduction of HIV-1 DP27 infection compared to controls (P<0.05).