Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra of Parkinson's disease patients, and several anti-oxidants have been shown to be effective on the treatment of Parkinson's disease. Curcumin has been previously reported to possess radical scavenger, iron chelating, anti-inflammatory properties in different tissues. The aim of present study is to explore the cytoprotection of curcumin against 6-hydroxydopamine (6-OHDA)-induced neuronal death, as well as the underlying mechanisms in MES23.5 cells. Our results showed that 6-OHDA significantly reduced the cell viability of MES23.5 cells. Curcumin protected MES23.5 cells against 6-OHDA neurotoxicity by partially restoring the mitochondrial membrane potential, increasing the level of Cu-Zn superoxide dismutase and suppressing an increase in intracellular reactive oxygen species. Furthermore, curcumin pretreatment significantly inhibited 6-OHDA induced nuclear factor-kappaB translocation. These results suggest that the neuroprotective effects of curcumin are attributed to the antioxidative properties and the modulation of nuclear factor-kappaB translocation.